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1. Introduction 
 
 
Design, development, testing, and evaluation of complex systems are predicated on a thorough 

study that combines analysis and synthesis. As systems become more intricate, inter-disciplinary, 

and distributed, increasing demands are placed for the development of rigorous mathematical 

methods pertaining to analysis and modeling issues that arise in military science, engineering, 

and operations. Solutions to specific problems are invariably dependent on the state-of-the-art in 

mathematical science subdisciplines. Either in distributed command, control, and 

communications, or in guidance and control of complex semi-automated and automated systems, 

several problems arise related to modeling, analysis, and design of complex real-time systems. 

Decisions related to sensing and control have to be made under stringent performance 

requirements and uncertain environmental conditions. These warrant a rigorous analytical 

investigation of controllers that have the ability to generate compensating actions that are based 

on complex realistic models of the underlying system and adapt to the varying environmental 

characteristics and deliver a performance that meets the desired specifications. That is, a general 

adaptive control theory that addresses anomalies and complexities that occur in practice and 

generate adequate performance is crucial. A particular complexity that represents the nemesis of 

all control engineers is a pure time-delay and is the focus of our proposed study. 

 

Delay systems represent a class of infinite-dimensional systems where mechanisms related to 

transport, propagation, or other effects related to a significant time-lag are present. Time-delays 

are present in almost all physical systems, simply due to the fact that there is always a delay 

between the application of the control input and the response of the key variables, with the actual 

value dependent on the underlying physics. Because of their effect on the stability properties of 

the resulting closed-loop system, time-delay is a particularly challenging feature in a control 

design. Small delays may destabilize some systems, while large delays may stabilize others. 

Depending on the complexity of the dynamics of the underlying system, as the delay increases, 

the property of the closed-loop system may switch from stability to instability and back an 
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infinite number of times. While in some applications, the presence of small delays raises several 

questions related to stability and robustness, in others, the presence of delays significantly 

improves the same properties. The problem of stability and stabilization becomes even more 

compounded if these time-delays are unknown. In problems related to fluid-flow, since time-

delays are due to transport lag, any uncertainty in fluid flow velocity directly results in 

uncertainties in the delay. In problems related to control of distributed networks, quite often, 

decisions have to be made based on the actual time-delays in the system. In the absence of 

accurate information regarding the delays, estimates based on average delay values are made 

which in turn may lead to compromises in the performance. In both of these problems, adaptive 

methods that allow on-line estimation of time-delays using all available off-line and on-line 

information will prove to be useful. This proposal concerns the development of adaptive control 

of linear and nonlinear dynamic systems in the presence of unknown time-delays.  

 

The field of adaptive control has addressed the problem of various kinds of uncertainties. 

Much of the progress in this field over the past thirty years is concerned with problems where the 

uncertainty takes the form of linearly occuring parameters. Recently, this form has been 

extended to the case when parameters occur in general nonlinear forms. Examples of dynamic 

systems where these nonlinearities occur include friction dynamics which include the Stribeck 

parameter, chemical reactors with reaction constant, magnetic bearings with air-gap as the 

underlying nonlinear parameter, and fed-batch fermentation processes where growth constants of 

enzymes affect the dynamics in a nonlinear manner. Adaptive control actions have been 

generated by combining an estimation of the parameters with a compensating control input that 

seeks to modify the dynamics of the process.  

 

Yet another form of uncertainty that represents a significant departure from these structure is 

one where the time-delay τ  is unknown. While τ  can indeed be viewed as a parameter, since it 

directly affects the support set, none of the traditional approaches of parameter adjustment is 

applicable to this case. Very few results currently exist for the adaptive control of and global 

stabilization in linear and nonlinear systems with unknown time-delays. The goal of this project 

is to develop such new tools for the control of general linear and nonlinear systems with 

unknown time-delays.  



ARO Final Report, November 30, 2005 
 

5

 

2. Summary of Results 
 

 

Over the past three years, we have used the following three approaches to make inroads into this 

very difficult problem.  These include: 

(A1) Use Lyapunov-Krasavoskii functionals to develop controller structure and adaptive 

laws that will guarantee a stable adaptive system when the delay is unknown. 

(A2) Represent time-delay as an unknown parameter and treat the underlying system as 

being nonlinearly parameterized, and develop adaptive methods for nonlinearly 

parameterized systems. 

(A3) Develop adaptive methods in the presence of uncertainties due to failures and actuator 

saturation so that they can be integrated into the solutions using either of the above two 

approaches. 

 

We have obtained results using each of these above approaches, and are summarized below. 

2.1. Approach (A1): The Lyapunov-Krasavoskii Functional 

The first system examined has time-delays in state variables ( 1τ ) and control input ( 2τ ), but 

.021 >=− τττ  The simplest 1st order system satisfying this condition is given by the following 

equation. 

)()()( 21 ττα −+−−= tutyty& , 

where α  is known, but iτ ’s are unknown. 

The control structure is chosen to be 

))(ˆ()( ttkytu τ−−= ,   

)).(ˆ()())(ˆ()(ˆ 22 ttytyttkyt τβττ −−−−=&  

This controller is shown to be stable by using a Lyapunov-Krasovskii functional V, 
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The details are illustrated in Appendix I. 

 

 

2.2. Approach (A2): Adaptive control of systems with unknown 

time-delay  

An alternate approach for the control of systems with an unknown time-delay is to treat them as 

a special class of nonlinearly parameterized systems.  While adaptive control for linearly 

parameterized systems is well known and has been documented in several textbooks, adaptive 

control of systems where parameters occur nonlinearly has begun to be investigated only 

recently.  In order to make some inroads, a stability framework has been established for studying 

estimation and control of nonlinearly parameterized systems in [1].  The major stumbling block 

in the extension of the approaches that have been developed for linearly parameterized (LP) 

systems to NP systems is the inadequacy of a gradient algorithm for the control of a NP system 

since the underlying cost function is nonconvex.  A new approach that we have successfully 

developed is a Polynomial Adaptive Controller (PAC) which uses a higher-order polynomial of 

the parameter errors to construct the Lyapunov function instead of the quadratic forms. New 

adaptive laws are constructed to guarantee the stability. With the new obtained freedom by 

adopting a higher order polynomial function, the PAC can deal with piece-wise linearly 

parameterized systems exactly the same as the current available adaptive controllers for linearly 

parameterized ones.  This in turn allows us to develop a stabilizing adaptive controllers for 

systems with unknown delays. In Appendix I, we present adaptive controllers for two classes of 

nonlinearly parameterized system, with the latter including delays which are treated as unknown 

nonlinear “parameters”. 
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2.3. Approach (A3): Adaptive control in the presence of failures 

and actuator saturation 

 

A reconfigurable controller is one that automatically redesigns control laws so as to restore 

nominal control of a plant in the event of actuator failure or other unforeseen changes in the plant 

dynamics. Reconfigurable controllers have the potential to provide a significant benefit in safety 

in several applications. It is estimated that 14% of all fatal aircraft failures could have been 

prevented, in principle, by an effective reconfigurable flight control system [2]. Reconfigurable 

control is crucial to the development of Unmanned Air Vehicles (UAV’s) as well, since UAV’s 

are required to follow navigational commands in the presence of uncertain, possibly failure-

related, disturbances. We explore how adaptive control can be applied for reconfiguration. The 

approach developed is applicable to any dynamic system in risk of actuator failure.  It has an 

immediate application to fixed-wing aircraft and rotor-craft. It has the potential of increasing 

safety and fault tolerance in non-combat situations, and survivability in battle by adapting to 

battle damage. 

 

The problem formulation is as follows.  Given a failed system of the form  

fBusatBxAx ppp +Λ+= )(
.

 

where Ap represents the unknown failed dynamics, Bp known control effectiveness, Λ unknown 

diagonal actuator failure matrix, f unknown constant disturbance vector, sat(.) is multi-

dimensional saturation function , and a desired dynamics of the form 

rBxAx mmmm +=
.

, 

where r is an arbitrary bounded reference input, determine u so that all the controller’s states 

remain bounded and (x- xm) remains as small as possible.  It is assumed that ideal gains 
*** ,, frx kKK  exist such that  

mxpp AKBA =Λ+ * ,      mrp BKB =Λ * ,     0)( * =−Λ fkB fp  

It is also assumed that the failed plant is controllable (the controllability matrix is full rank) and 

that the initial conditions lie within certain bounds, which are determined by the saturation limits 

and the system dynamics.  
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A controller of the form 

frxc krKxKu ++= , 

is proposed with adaptive laws of the form: 

T
u

T
px xPeBK 1

.
Γ−= ,     T

u
T
pr rPeBK 2

.
Γ−= ,     u

T
p PeBf 3

.
^

Γ−= ,     and u
T
p PeBudiag )(4

.
^

∆Γ=λ  

where eu = e – e∆, e = x – xm, 0<−=+ QPAPA m
T
m , and iΓ  is symmetric positive definite for 

4,...,1=i .   

Saturation is compensated for with an auxiliary error generated as 

udiagBeAe pm ∆+= ∆∆ )(
^.
λ , 

where ∆u = sat(u) - u, and sat(.) is a multi-dimensional saturation function.  The results in [3] 

(also in A2-4.pdf) show that Kx, Kr, kf , λ̂ , and eu are bounded and that xmax and Kmax exist such 

that, if max0 )( xtx < , and max0 )( KtV < , then x is bounded and: 





 ∆=

≤
)(sup)( τ

τ
uOte

t
. 

In addition recent results on nonlinear parameterizations allow us to extend the scope of stable 

adaptation to nonlinear error models of the form 









∆Λ+= ∑

=

N

i
iipm KfurxgBeAe

1

~.
)~,,,,( , 

where gi are known, possibly nonlinear, functions of their arguments. The controller was tested 

on a simulation of a large four engine aircraft with four different failure scenarios. Simulations 

demonstrated that the proposed controller can (i) achieve stable reconfiguration following 

actuator failures, (ii) provide stable adaptation in the presence of significant actuator saturation, 

and (iii) adaptively perform control allocation for reconfiguration. 
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Appendix I 

Approach (A1): The Lyapunov-Krasavoskii Functional 

 

 

Assuming that 21)(ˆ ττττ −=>t  for all  t, it can be shown that the time-derivative of  V  in 

section 2.1 is given by  
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Therefore, 
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If we further assume that 121 <+ τατ k , we may show )(ty  is uniformly bounded. Then, )(tu  

is uniformly bounded, and )(ty&  is uniformly bounded. Hence, )(ty  is uniformly continuous. 

Furthermore, it can be shown that )).,0([)( 2 ∞∈ Lty  Hence, 0)(lim =
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t

 by applying Barbalat’s 

lemma. 

We have also investigated a second class of systems with unknown time-delay in the control 

input ( 012 =>= τττ ), which is of the form, 
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The stability of the adaptive controller was shown by using a Lyapunov-Krasovskii functional V, 
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Using the adaptation law for )(ˆ tτ  and setting 22 k=ε , we have 
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If we further assume 01 >− Tbkτ , we may show )(tx  is uniformly bounded. Then, )(tu  is 

uniformly bounded, and )(tx&  is uniformly bounded. Hence, )(tx  is uniformly continuous. 

Furthermore, it can be shown that )).,0([)( 2 ∞∈ Ltx  Hence, 0)(lim =
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t

 by applying 

Barbalat’s lemma. 

 

We note that in the second class of systems, the control input does not require any knowledge of 

τ  and hence does not require adaptation.  Currently, we are examining those systems that 

explicitly require knowledge of the time-delay in the control input. 
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Approach (A2) Treating Time-delay as a nonlinear parameter 
 
Please see the appendices A2-1.pdf, A2-2.pdf, and A2-3.pdf for a summary of the results obtained in this cateogry. 
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